
Writeup Summary
Chase Kanipe

chasekanipe@gmail.com

Overview— I decided this writeup needed a summary because the
sub-sections ended up being quite long. All the key information is
in this summary and each section has a more detailed separate
writeup below.

I. GHIDRA DECOMPILER

My first task was to examine the workings
of the decompiler. There was specific interest in
finding anything in the Ghidra code base related to
data flow or taint analysis.

The ghidra decompiler is a project mostly
separated from the rest of ghidra. It’s written in
C++, and the rest of ghidra’s Java codebase
communicates with it over stdin and stdout. I wrote
a few scripts to communicate with the decompiler
in a headless way so programs can be decompiled
from the terminal. The decompiler operates on
p-code generated by the SLEIGH engine, and
transforms it until it is structured in a form that can
be translated more directly to C tokens. The p-code
is only in SSA form during the main simplification
loop.

II. GHIDRA DECOMPILER ACCURACY
The general consensus is that the ghidra

decompiler is superior to its competitors. It far
surpasses many popular ones like r2dec and
snowman. The only real competitor to it is
Hex-Rays (part of IDA), but the ghidra decompiler
consistently produces fewer extraneous variables
and goto. Some disadvantages are that you can’t
change data types (you can do this in the ghidra
GUI, but it’s not part of the decompiler) and that
p-code can be difficult to work with.

The decompiler is very accurate for the
compilation of basic functions. There are often
minor differences like for loops being replaced with
while loops, some extra variables, and some issues
identifying data types. Generally though, it’s
accurate enough that (according to some NSA

people I talked to), that those who use it rarely look
at the disassembly because the decompilation is
sufficient.

There are a few places the decompiler
consistently fails. For one, it’s generally going to
decompile structs into several variables, though this
can be fixed manually in ghidra. This may not
matter for the analysis sake though as long as the
programs are equivalent. Ghidra also doesn’t do
well with obfuscation (there is work being done on
this, see here) though I don’t think this matters to
Correct Computation. It also tends to fail at type
identification when there are heavier compiler
optimizations.

III. P-CODE
There are two important forms of p-code:

the lower level p-code produced by sleigh, and the
higher-level pcode produced by the decompiler that
is translated into C tokens. The IR isn’t actually
muti-level, but the two forms are usually structured
very differently. The low level p-code is very
verbose (for example a shr instruction in x86
corresponds to 30 p-code instructions). Ghidra
supports showing the lower level p-code by default
and I wrote a plugin to display the higher level
p-code.

There are some challenges with p-code. For
one, it’s based on 20 year old research. It was not
designed to be human readable, which can make
working with it tricky. There would be some
challenges with translating it to LLVM. For one,
there are large syntactical differences that make any
one to one correspondence between the instructions
unclear. Perhaps more significantly, the p-code is
not in SSA form except during the main
simplification loop while LLVM is. This means that
during the translation process the p-code would
need to be translated into SSA form. I don’t know

https://www.msreverseengineering.com/blog/2019/4/17/an-abstract-interpretation-based-deobfuscation-plugin-for-ghidra

how hard this would be, but it looks like the
translation process overall would be non-trivial.

IV.RECOMPILATION

While there appear to be some challenges
with translating p-code directly to LLVM (though
it’s certainly possible), the more indirect route of
recompiling the decompiled code to LLVM is a
potential alternative. Since the ghidra decompiler is
good enough that I could attempt this without much
difficulty, I did some basic experimentation. I found
that a full decompilation of most programs
produced a large number of extraneous functions,
but that these were patterned in such a way that they
could be filtered out algorithmically. Ghidra would
also occasionally fail to identify the return type of a
function. I had a lot of success getting the
recompilation to LLVM working with smaller
programs but I have yet to see if it would work with
large applications.

V. CLANG STATIC ANALYZER

Because I had a lot of success recompiling
the decompiled code to LLVM I spent some time
experimenting with using clang static analyzer on
the newly compiled code. Any bugs the analyzer
found in the original source code it also found in
the recompiled version. In fact, I did find one edge
case where CSA found a bug via the decompiled
code that it couldn’t in the original source. It is well
known that symbolic execution techniques have
issues with path explosion in loops. In cases where
the compiler optimizations could either unroll or
optimize away the loop, CSA then has the potential
to find a bug that it was skipping over before. There
is a tradeoff, however, because heavier compiler
optimizations make the decompilation less accurate
- including, in one case, an incorrect calculation of
a buffer size.

Decompiler Design Writeup
Chase Kanipe

chasekanipe@gmail.com

Overview— This writeup summarizes the high-level design of the
ghidra decompiler. This information was mostly synthesized
from the ghidra class, ghidra docs, decompiler docs, SLEIGH
docs, this post, this presentation and various other references.

I. INTRODUCTION

The ghidra decompiler is mostly separated
from the rest of ghidra. While the rest of ghidra is
written in Java, the decompiler is a standalone C++
project that communicates over stdin and stout
using a binary protocol specified in the
DecompileProcess class and implemented in the
DecompInterface class. Some other ghidra features
relevant to this project include the scripting support
in Java and Python2 (the API is described here),
and headless mode which allows ghidra to be more
easily integrated with other tools.

II. DECOMPILER OVERVIEW
Below is an explanation of ghidra’s

decompilation process.

1) Specify Entry Point: This is a starting
address for a particular function.

2) Generate Raw P-code: The p-code is
generated by the SLEIGH engine. This engine was
originally based on SLED (designed by Norman
Ramsey and Mary Fernandez, paper here). SLEIGH
is a standalone tool designed to be used via it’s API.
It is designed such that it can be used in a processor
independant way. The library can be built
independently of the rest of ghidra for integration
with other tools, this process is described here.

One of my other writeups is devoted to
pcode, but to give a basic example, here’s how the
MOV instruction translates to the p-code COPY
instruction.

MOV RAX,RSI
RAX = COPY RSI

Sleigh will also add metadata to the p-code
instructions (for example adding parameters
associated with a function call, or adding
analysis-derived instructions not present in the raw
p-code)

3) Generate Basic Blocks and CFG: The basic
blocks are generated using the p-code instructions
and the control flow graph is generated using from
the basic blocks.

4) Inspect Sub-functions: First ghidra follows
each direct call and looks up parameter information.
This is repeated for any indirect calls that can be
converted to direct calls. Prototype information is
either inferred or set to default, but this can be
overridden by the user later.

5) Adjust/Annotate P-code: The database is
used to search for known values of memory
locations coming into the function. These are used

https://github.com/NationalSecurityAgency/ghidra/tree/master/GhidraDocs/GhidraClass
https://ghidra.re/ghidra_docs/api/index.html
https://ghidra-decompiler-docs.netlify.com/
https://ghidra-decompiler-docs.netlify.com/sleigh.html
https://ghidra-decompiler-docs.netlify.com/sleigh.html
https://www.riverloopsecurity.com/blog/2019/05/pcode/
https://downloads.immunityinc.com/infiltrate2019-slidepacks/alexei-bulazel-jeremy-blackthorne-three-heads-are-better-than-one/INFILTRATE_Ghidra_Slides.pdf
https://github.com/NationalSecurityAgency/ghidra/blob/master/Ghidra/Features/Decompiler/src/main/java/ghidra/app/decompiler/DecompileProcess.java
https://github.com/NationalSecurityAgency/ghidra/blob/master/Ghidra/Features/Decompiler/src/main/java/ghidra/app/decompiler/DecompInterface.java
https://ghidra.re/ghidra_docs/api/
https://ghidra-decompiler-docs.netlify.com/sleigh.html
http://delivery.acm.org/10.1145/260000/256225/p492-ramsey.pdf?ip=129.2.181.134&id=256225&acc=ACTIVE%20SERVICE&key=5F8E7AA76238C9EB%2E737F10F6E50A862B%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1571156354_60e42d489800d93f2ef4a81ce031af71
https://ghidra-decompiler-docs.netlify.com/sleigh.html#sleighbuild

by inserting p-code COPY instructions that assign
the correct value to the corresponding memory
location in the prototype or the beginning of the
function.

6) The Main Simplification Loop: This is the
main loop where p-code is simplified into a form
that can be translated to C tokens. Section III of
this writeup is devoted to details of the main
simplification loop.

7) Perform Final P-Code Transformations:
This phase transforms the output of the main
simplification loop enhance readability of the final
output and prepare it for the conversion to C tokens.

8) Exit SSA Form and Merge Low-level
Variables: In this step the static variables of the
SSA are merged into higher level variables by
exiting the SSA form and eliminating/merging the
SSA phi-nodes. Merging must avoid a high-level
variable holding different values in several memory
locations at the same time. This is related to register
coloring in compiler design.

9) Determine Expressions and Temporary
Variables: In this step the the final expression
forms are determined, some variables are forced to
be explicit because they are read too often or
because making it implicit would propagate another
variable too far.

10) Merge Low-level Variables: The current
form still contains too many variables to translate
accurately to C code. More variables are merged in
this step.

11) Add Type Casts: Type casts are added to
the code.

12) Establish Function Prototypes: Function
prototypes are determined and names are selected
or generated.

13) Select Variable Names: At this point all the
high level variables have been selected, so names
are generated for them.

14) Final Control Flow Structuring: Switch
cases and jumps are determined.

15) Emit C Tokens: The final C is emitted by
translating the higher level p-code into the
corresponding C tokens.

III. MAIN SIMPLIFICATION LOOP

The main simplification loop translates the
lower level p-code to a higher level version that can
be more easily translated to C tokens.

1) Generate SSA Form: The first step is to
generate a static single assignment form (SSA) of
the IR. SSA’s require that each variable is assigned
exactly once and that each variable is defined
before it is used. This process normally splits some
of the variables in the original IR into several
versions. SSA’s are normally used because they
simplify the application of many compiler
optimizations, though in ghidra the process is
somewhat different. In ghidra the SSA helps
improve constant propagation, dead code
elimination, and more.

2) Dead Code Elimination: Dead code
elimination is essential to the decompiler because a
large percentage of machine instructions have
side-effects on machine state, such as the setting of
flags, that are not relevant to the function at a
particular point in the code. The decompiler detects
dead code down to the bit, in order to appropriately
truncate variables in these situations.

3) Propagate Local Types: In this step the
decompiler attempts to infer higher level
information about the types of the variables. This
information is inferred from, for example,
computations that the variable is used in and how it
is stored in memory.

4) Perform Term Rewriting: This section
accomplishes most of the simplifications.
Following formal methods styles of term rewriting,
lists of rules are applied to the syntax tree. This

https://en.wikipedia.org/wiki/Static_single_assignment_form

functions similar to some compiler methods except
the goal is simplification rather than optimizations.

5) Adjust CFG: Deals with unreachable code,
unused branches, empty basic blocks, redundant
predicates

6) Recover CF structure: The decompiler
attempts to recover higher-level control flow
objects.

IV.DATA FLOW ANALYSIS

Ghidra’s data flow analysis capability is one
of its key features. It can show where data comes
from for any register or variable. IDA has “dumb”
text highlighting but it’s much less sophiticated
than in ghidra. Some source code related to the data
flow analysis can be viewed in the GraphAST.java
class.

V. COMPARISONS

There are many open and closed source
decompilers, each of which has it’s advantages and
disadvantages. The most popular ones include:
Snowman, IDA Hex-Rays, r2dec, and of course
ghidra. Of these, the only serious competitor to
ghidra is Hex-Rays, so I’ll focus on that for
comparison. Below is a comparison table of the
decompiler features.

IDA Hex-Rays Ghidra Decompiler

Microcode IR
Limited architectures
Variables can be mapped
Cross references data
Produces more goto tokens
Can change data types
Rudimentary data flow
Produces more variables

P-Code IR
Most architectures
Variables cannot be mapped
No cross references
Produces fewer gotos tokens
Can’t change data types
Better data flow/slicing
Produces fewer variables

The general consensus is that the ghidra
decompiler is superior to the alternatives. Hex-Rays
produces many more extra variables and goto
statements in ghidra. I’ve been told by some NSA
people that the ghidra decompiler is good enough
that people using it rarely have to look at the
disassembly or graph view.

https://github.com/NationalSecurityAgency/ghidra/blob/master/Ghidra/Features/Decompiler/ghidra_scripts/GraphAST.java

Decompiler Accuracy Writeup
Chase Kanipe

chasekanipe@gmail.com

Fibonacci

Original C Decompiled C

int fib() {
 int n = 30, first = 0, second = 1, next, c;
 printf("First %d terms of the series are:\n",
n);
 for (c = 0; c < n; c++)
 {
 if (c <= 1)
 next = c;
 else {
 next = first + second;
 first = second;
 second = next;
 }
 printf("%d\n", next);
 }
 return 0;
}

undefined8 fib(void) {
 uint local_1c;
 uint local_18;
 uint local_14;
 uint local_10;

 local_1c = 0;
 local_18 = 1;
 printf("First %d terms of the series
are:\n",0x1e);
 local_10 = 0;
 while ((int)local_10 < 0x1e) {
 if ((int)local_10 < 2) {
 local_14 = local_10;
 } else {
 local_14 = local_18 + local_1c;
 local_1c = local_18;
 local_18 = local_14;
 }
 printf("%d\n",(ulong)local_14);
 local_10 = local_10 + 1;
 }
 return 0;
}

Decompilation is basically the same as the original C insofar as it’s relevant to the
analysis. Generates a for loop rather than a while loop, unsigned integers with casts rather than
signed integers, casts to a long. Doesn’t infer the function return type.

Decimal to Binary

Original C Decompiled C

int conv() {
 int n, c, k;

 printf("Enter an integer in decimal number
system\n");
 scanf("%d", &n);
 printf("%d in binary number system is:\n", n);

 for (c = 31; c >= 0; c--)
 {
 k = n >> c;

 if (k & 1)
 printf("1");
 else
 printf("0");
 }
printf("\n");
return 0;
}

undefined8 conv(void) {
 long in_FS_OFFSET;
 uint local_1c;
 int local_18; // c
 uint local_14;
 long local_10;

 local_10 = *(long *)(in_FS_OFFSET + 0x28);
 puts("Enter an integer in decimal number
system");
 __isoc99_scanf(&DAT_00101172,&local_1c);
 printf("%d in binary number system
is:\n",(ulong)local_1c);
 local_18 = 0x1f;
 while (-1 < local_18) {
 local_14 = (int)local_1c >> ((byte)local_18 &
0x1f);
 if ((local_14 & 1) == 0) {
 putchar(0x30);
 }
 else {
 putchar(0x31);
 }
 local_18 = local_18 + -1;
 }
 putchar(10);
 return 0;
}

Decompilation here is also equivalent to the original code as far as the analysis is
concerned. Again, the for loop is replaced with a while loop and a counter, and the ints are
replaced with uints with casts.

Binary Search

Original C Decompiled C

int binarySearch() {
 int c, first, last, middle, n, search,
array[100];

 printf("Enter number of elements\n");
 scanf("%d",&n);

 printf("Enter %d integers\n", n);

 for (c = 0; c < n; c++)
 scanf("%d",&array[c]);

 printf("Enter value to find\n");
 scanf("%d", &search);

 first = 0;
 last = n - 1;
 middle = (first+last)/2;

 while (first <= last) {
 if (array[middle] < search)
 first = middle + 1;
 else if (array[middle] == search) {
 printf("%d found at location %d.\n",
search, middle+1);
 break;
 }
 else
 last = middle - 1;
 middle = (first + last)/2;
 }
 if (first > last)
 printf("Not found! %d isn't present in the
list.\n", search);
 return 0;
}

undefined8 binarySearch(void)
{
 long in_FS_OFFSET;
 uint local_1c0;
 uint local_1bc;
 int local_1b8;
 int local_1b4;
 int local_1b0;
 int local_1ac;
 uint local_1a8 [102];
 long local_10;

 local_10 = *(long *)(in_FS_OFFSET + 0x28);
 puts("Enter number of elements");
 __isoc99_scanf(&DAT_00101172,&local_1c0);
 printf("Enter %d integers\n",(ulong)local_1c0);
 local_1b8 = 0;
 while (local_1b8 < (int)local_1c0) {
 __isoc99_scanf(&DAT_00101172,local_1a8 +
(long)local_1b8,(long)local_1b8 * 4);
 local_1b8 = local_1b8 + 1;
 }
 puts("Enter value to find");
 __isoc99_scanf(&DAT_00101172,&local_1bc);
 local_1b4 = 0;
 local_1b0 = local_1c0 - 1;
 local_1ac = local_1b0;
 do {local_1ac = local_1ac / 2;
 if (local_1b0 < local_1b4) {
LAB_00100c5b:
 if (local_1b0 < local_1b4) {
 printf("Not found! %d isn\'t present in
the list.\n",(ulong)local_1bc);
 }if (local_10 != *(long *)(in_FS_OFFSET +
0x28)) {__stack_chk_fail();}
 return 0;
 } if ((int)local_1a8[local_1ac] <
(int)local_1bc) {
 local_1b4 = local_1ac + 1;
 } else {
 if (local_1a8[local_1ac] == local_1bc) {
 printf("%d found at location
%d.\n",(ulong)local_1bc,(ulong)(local_1ac + 1));
 goto LAB_00100c5b;
 }
 local_1b0 = local_1ac + -1;
 }
 local_1ac = local_1b0 + local_1b4;
 } while(true);
}

Decompilation is relatively good here. Some extra code constructs and variables.

Heap Example

Original C Decompiled C

int heapTest() {
 char *str;

 /* Initial memory allocation */
 str = (char *) malloc(15);
 strcpy(str, "tutorialspoint");
 printf("String = %s, Address = %u\n", str,
str);

 /* Reallocating memory */
 str = (char *) realloc(str, 25);
 strcat(str, ".com");
 printf("String = %s, Address = %u\n", str,
str);

 free(str);
 return(0);
}

undefined8 heapTest(void) {
 char cVar1;
 undefined8 *__ptr;
 char *__ptr_00;
 ulong uVar2;
 char *pcVar3;
 byte bVar4;

 bVar4 = 0;
 __ptr = (undefined8 *)malloc(0xf);
 *__ptr = 0x6c6169726f747574;
 *(undefined4 *)(__ptr + 1) = 0x696f7073;
 *(undefined2 *)((long)__ptr + 0xc) = 0x746e;
 *(undefined *)((long)__ptr + 0xe) = 0;
 printf("String = %s, Address =
%u\n",__ptr,__ptr);
 __ptr_00 = (char *)realloc(__ptr,0x19);
 uVar2 = 0xffffffffffffffff;
 pcVar3 = __ptr_00;
 do {
 if (uVar2 == 0) break;
 uVar2 = uVar2 - 1;
 cVar1 = *pcVar3;
 pcVar3 = pcVar3 + (ulong)bVar4 * -2 + 1;
 } while (cVar1 != '\0');
 *(undefined4 *)(__ptr_00 + (~uVar2 - 1)) =
0x6d6f632e;
 (__ptr_00 + (~uVar2 - 1))[1] = 0;
 printf("String = %s, Address =
%u\n",__ptr_00,__ptr_00);
 free(__ptr_00);
 return 0;
}

Decompilation is again relatively good here. Several extra variables.

Structs

Original C Decompiled C

struct Books {
 char title[50];
 char author[50];
 char subject[100];
 int book_id;
};

int structTest() {
 struct Books Book1;

 strcpy(Book1.title, "C Programming");
 strcpy(Book1.author, "Nuha Ali");
 strcpy(Book1.subject, "C Programming
Tutorial");
 Book1.book_id = 6495407;

 printf("Book 1 title : %s\n", Book1.title);
 printf("Book 1 author : %s\n", Book1.author);
 printf("Book 1 subject : %s\n",
Book1.subject);
 printf("Book 1 book_id : %d\n",
Book1.book_id);
}

void structTest(void)

{
 long in_FS_OFFSET;
 undefined8 local_e8;
 undefined4 local_e0;
 undefined2 local_dc;
 undefined8 local_b6;
 undefined local_ae;
 undefined8 local_84;
 undefined8 local_7c;
 undefined4 local_74;
 undefined2 local_70;
 undefined local_6e;
 uint local_20;
 long local_10;

 local_10 = *(long *)(in_FS_OFFSET + 0x28);
 local_e8 = 0x6172676f72502043;
 local_e0 = 0x6e696d6d;
 local_dc = 0x67;
 local_b6 = 0x696c41206168754e;
 local_ae = 0;
 local_84 = 0x6172676f72502043;
 local_7c = 0x755420676e696d6d;
 local_74 = 0x69726f74;
 local_70 = 0x6c61;
 local_6e = 0;
 local_20 = 0x631caf;
 printf("Book 1 title : %s\n",&local_e8);
 printf("Book 1 author : %s\n",&local_b6);
 printf("Book 1 subject : %s\n",&local_84);
 printf("Book 1 book_id : %d\n",(ulong)local_20);
 return;
}

It doesn’t appear that ghidra can automatically detect structs at least in the limited way I used

them here. Structs can be manually defined in ghidra if need be. However, it may not actually matter for

the sake of program analysis whether or not ghidra recognizes the structs as long as the programs are

equivalent.

P-Code Writeup
Chase Kanipe

chasekanipe@gmail.com

Overview— This covers various aspects of p-code. I first examine
the syntax of p-code, then compare it to other IRs and directly to
LLVM.

I. OVERVIEW

The machine language translation and raw
p-code generation is accomplished by the SLEIGH
engine. Though it is integrated with the decompiler,
SLEIGH can also be used as a standalone library
for disassembly and p-code generation as described
here. The ghidra decompiler uses it to generate the
initial p-code, then manipulates this p-code so it can
be translated to the corresponding C tokens.

The p-code instruction set is relatively
small. The table below contains a complete list of
instructions.

COPY INT_ADD BOOL_OR

LOAD INT_SUB FLOAT_EQUAL

STORE INT_CARRY FLOAT_NOTEQUA
L

BRANCH INT_SCARRY FLOAT_LESS

CBRANCH INT_SBORROW FLOAT_LESSEQUA
L

BRANCHIND INT_2COMP FLOAT_ADD

CALL INT_NEGATE FLOAT_SUB

CALLIND INT_XOR FLOAT_MULT

USERDEFINED INT_AND FLOAT_DIV

RETURN INT_OR FLOAT_NEG

PIECE INT_LEFT FLOAT_ABS

SUBPIECE INT_RIGHT FLOAT_SQRT

INT_EQUAL INT_SRIGHT FLOAT_CEIL

INT_NOTEQUAL INT_MULT FLOAT_FLOOR

INT_LESS INT_DIV FLOAT_ROUND

INT_SLESS INT_REM FLOAT_NAN

INT_LESSEQUAL INT_SDIV INT2FLOAT

INT_SLESSEQUAL INT_SREM FLOAT2FLOAT

INT_ZEXT BOOL_NEGATE TRUNC

INT_SEXT BOOL_XOR CPOOLREF

 BOOL_AND NEW

P-code operates over varnodes - quoting

from the Ghidra documentation: “A varnode is a
generalization of either a register or a memory
location. It is represented by the formal triple: an
address space, an offset into the space, and a size.
Intuitively, a varnode is a contiguous sequence of
bytes in some address space that can be treated as a
single value. All manipulation of data by p-code
operations occurs on varnodes.”

II. IR HIGH-LEVEL COMPARISONS

P-code differs from other IRs in various
ways. These are summarized in the table below.

P-Code LLVM

- Not easily readable
- Single level
- Based on 20 y.o. research
- Only SSA during decomp

- Human readable
- Single level
- Based on modern research
- SSA for scalar registers

Binary Ninja Hex Rays

https://ghidra-decompiler-docs.netlify.com/sleigh.html
https://ghidra-decompiler-docs.netlify.com/sleighapibasic
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_copy
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_add
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_bool_or
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_load
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_sub
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_float_equal
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_store
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_carry
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_float_notequal
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_float_notequal
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_branch
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_scarry
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_float_less
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_cbranch
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_sborrow
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_float_lessequal
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_float_lessequal
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_branchind
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_2comp
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_float_add
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_call
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_negate
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_float_sub
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_callind
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_xor
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_float_mult
https://ghidra.re/courses/languages/html/pseudo-ops.html#cpui_userdefined
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_and
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_float_div
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_return
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_or
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_float_neg
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_piece
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_left
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_float_abs
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_subpiece
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_right
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_float_sqrt
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_equal
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_sright
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_float_ceil
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_notequal
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_mult
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_float_floor
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_less
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_div
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_float_round
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_sless
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_rem
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_float_nan
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_lessequal
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_sdiv
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int2float
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_slessequal
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_srem
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_float2float
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_zext
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_bool_negate
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_trunc
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_int_sext
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_bool_xor
https://ghidra.re/courses/languages/html/pseudo-ops.html#cpui_cpoolref
https://ghidra.re/courses/languages/html/pcodedescription.html#cpui_bool_and
https://ghidra.re/courses/languages/html/pseudo-ops.html#cpui_new

- Human readable
- Multi-level IR
- Based on modern research
- SSA form

- Not easily readable
- Single level
- Idk; Not well documented
- Idk; Not well documented

The main strength of p-code is that SLEIGH
supports many architectures, the integration with
ghidra, and that it has some documentation.
Unfortunately the design for it was done 20+ years
ago, so there are some design differences between it
and other IRs. The most relevant non-syntactical
difference between it and LLVM is that raw p-code
is not in SSA form while LLVM is. This means that
if you want to convert from p-code to LLVM,
you’ll also have to convert it to SSA form.

III. DIRECT COMPARISONS
Un-optimized p-code can be very verbose.

Consider the simple C function.

int main(void)

{
 printf("%d\n",10);
 return 0;
}

The corresponding x86 and raw p-code are shown
below.

x86 Code Raw P-Code

PUSH RBP

MOV RBP, RSP

SUB RSP, 0x10

MOV dword ptr [RBP +
local_c], 0x5

$U2510:8 = COPY RBP
RSP = INT_SUB RSP, 8:8
STORE ram(RSP), $U2510

RBP = COPY RSP

CF = INT_LESS RSP, 16:8
OF = INT_SBORROW RSP, 16:8
RSP = INT_SUB RSP, 16:8
SF = INT_SLESS RSP, 0:8
ZF = INT_EQUAL RSP, 0:8

$U620:8 = INT_ADD RBP, -4:8
$U1fe0:4 = COPY 5:4
STORE ram($U620), $U1fe0

ADD dword ptr [RBP +
local_c], 0x5

MOV EAX, dword ptr
[RBP + local_c]

MOV ESI, EAX

LEA RDI,
[DAT_00100704]
MOV EAX, 0x0

CALL printf

MOV EAX, 0x0

LEAVE

RET

$U620:8 = INT_ADD RBP, -4:8
$U1fe0:4 = LOAD ram($U620)
CF = INT_CARRY $U1fe0, 5:4
$U1fe0:4 = LOAD ram($U620)
OF = INT_SCARRY $U1fe0, 5:4
$U1fe0:4 = LOAD ram($U620)
$U1fe0:4 = INT_ADD $U1fe0, 5:4
STORE ram($U620), $U1fe0
$U1fe0:4 = LOAD ram($U620)
SF = INT_SLESS $U1fe0, 0:4
$U1fe0:4 = LOAD ram($U620)
ZF = INT_EQUAL $U1fe0, 0:4

$U620:8 = INT_ADD RBP, -4:8
$U1fd0:4 = LOAD ram($U620)
EAX = COPY $U1fd0
RAX = INT_ZEXT EAX

ESI = COPY EAX
RSI = INT_ZEXT ESI

RDI = COPY 0x100704:8

RAX = COPY 0:8

int printf(char * __format,
...)
RSP = INT_SUB RSP, 8:8
STORE ram(RSP), 0x100673:8
CALL *[ram]0x100520:8

RAX = COPY 0:8

RSP = COPY RBP
RBP = LOAD ram(RSP)
RSP = INT_ADD RSP, 8:8
RIP = LOAD ram(RSP)

RSP = INT_ADD RSP, 8:8
RETURN RIP

As you can see each x86 instruction

corresponds to many p-code instructions. x86
instructions like shr can translate to as many as 30
p-code instructions.

The decompiler will condense this p-code
into a representation more easily translatable into C
tokens in the main simplification loop. Ghidra
doesn’t natively support the displaying of this
higher-level p-code, so I wrote a short plugin to do
it using the DecompInterface class.

The correlations between this higher level
p-code and the C tokens are clear. This higher level

https://github.com/chase1635321/static-analysis-tool/blob/master/ghidra-plugins/pcode.py
https://github.com/NationalSecurityAgency/ghidra/blob/master/Ghidra/Features/Decompiler/src/main/java/ghidra/app/decompiler/DecompInterface.java

p-code also has some type information embedded in
it.

High Level P-code

CALL (ram, 0x100520, 8) , (unique,
0x10000021, 8) , (const, 0xa, 8)

(unique, 0x10000021, 8) COPY (const,
0x100704, 8)

(register, 0x0, 8) COPY (const, 0x0, 8)

RETURN (const, 0x0, 8), (register, 0x0, 8)

This same function translated into LLVM produces.

LLVM Code

define i32 @main() #0 {
 %1 = alloca i32, align 4
 store i32 0, i32* %1, align 4
 %2 = call i32 (i8*, ...) @printf(i8*
getelementptr inbounds ([4 x i8], [4 x i8]*
@.str, i32 0, i32 0), i32 10)
 ret i32 0
}
 -- Typedata annotations removed --

It looks like translation between the

high-level p-code and llvm would be non-trivial.
Translating from the low level p-code to llvm
would probably be easier, but tools already exist for
lifting x86 to a low level llvm so I don’t see the
point of doing that. There is also the added
complication of translating the p-code to SSA form.
The easier strategy would be to recompile the
decompiled code to LLVM.

IV.CONCLUSIONS
P-code is different from LLVM in many

ways. The most significant difference for purposes
of translation, is that LLVM is in SSA and p-code

isn’t. This means that to translate p-code to LLVM
it will also need to be translated into SSA form.

Recompiling Ghidra Output Writeup
Chase Kanipe

chasekanipe@gmail.com

One of the goals of this project is to be able to analyze binary files with tools like clang
static analyzer. To do this, the binary must first be lifted to LLVM. An alternative route is to just
recompile the decompiler output into LLVM. There are, however, complications introduced by
the fact that the ghidra decompiler inevitably won’t output code in a form that is ready for
compilation. This writeup contains information relating to my initial attempts at understanding
and automating this recompilation process.

Fibonacci

Original C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int fib()
{
 int n = 30, first = 0, second = 1, next, c;
 printf("First %d terms of Fibonacci series are:\n", n);

 for (c = 0; c < n; c++)
 {
 if (c <= 1)
 next = c;
 else
 {
 next = first + second;
 first = second;
 second = next;
 }
 printf("%d\n", next);
 }
 return 0;
}

int main() {
 fib();
}

To dump the decompiled code for the whole file I wrote a script that takes advantage of
ghidras headless mode so the decompilation process can stay in the terminal. As you can see
from the output below, the initial decompiled file contains several hundred lines of extraneous
functions and declarations.

Decompiler Output (both columns)

typedef unsigned char undefined;
typedef unsigned char byte;
typedef unsigned char dwfenc;
typedef unsigned int dword;
typedef unsigned long qword;
typedef unsigned char undefined1;
typedef unsigned int undefined4;
typedef unsigned long undefined8;
typedef unsigned short word;
typedef struct eh_frame_hdr eh_frame_hdr,
*Peh_frame_hdr;

struct eh_frame_hdr {
 byte eh_frame_hdr_version; // Exception
Handler Frame Header Version
 dwfenc eh_frame_pointer_encoding; // Exception
Handler Frame Pointer Encoding
 dwfenc eh_frame_desc_entry_count_encoding; //
Encoding of # of Exception Handler FDEs
 dwfenc eh_frame_table_encoding; // Exception
Handler Table Encoding
};

typedef struct fde_table_entry fde_table_entry,
*Pfde_table_entry;

struct fde_table_entry {
 dword initial_loc; // Initial Location
 dword data_loc; // Data location
};

typedef struct Elf64_Phdr Elf64_Phdr,
*PElf64_Phdr;

typedef enum Elf_ProgramHeaderType {
 PT_DYNAMIC=2,
 PT_GNU_EH_FRAME=1685382480,
 PT_GNU_RELRO=1685382482,
 PT_GNU_STACK=1685382481,
 PT_INTERP=3,
 PT_LOAD=1,
 PT_NOTE=4,
 PT_NULL=0,
 PT_PHDR=6,
 PT_SHLIB=5,
 PT_TLS=7
} Elf_ProgramHeaderType;

struct Elf64_Phdr {

typedef struct Elf64_Rela Elf64_Rela,
*PElf64_Rela;

struct Elf64_Rela {
 qword r_offset; // location to apply the
relocation action
 qword r_info; // the symbol table index and
the type of relocation
 qword r_addend; // a constant addend used to
compute the relocatable field value
};

typedef struct Elf64_Ehdr Elf64_Ehdr,
*PElf64_Ehdr;

struct Elf64_Ehdr {
 byte e_ident_magic_num;
 char e_ident_magic_str[3];
 byte e_ident_class;
 byte e_ident_data;
 byte e_ident_version;
 byte e_ident_pad[9];
 word e_type;
 word e_machine;
 dword e_version;
 qword e_entry;
 qword e_phoff;
 qword e_shoff;
 dword e_flags;
 word e_ehsize;
 word e_phentsize;
 word e_phnum;
 word e_shentsize;
 word e_shnum;
 word e_shstrndx;
};
typedef struct evp_pkey_ctx_st evp_pkey_ctx_st,
*Pevp_pkey_ctx_st;

struct evp_pkey_ctx_st {
};

typedef struct evp_pkey_ctx_st EVP_PKEY_CTX;

int _init(EVP_PKEY_CTX *ctx)

{
 int iVar1;

 enum Elf_ProgramHeaderType p_type;
 dword p_flags;
 qword p_offset;
 qword p_vaddr;
 qword p_paddr;
 qword p_filesz;
 qword p_memsz;
 qword p_align;
};

typedef enum Elf64_DynTag {
 DT_AUDIT=1879047932,
 DT_AUXILIARY=2147483645,
 DT_BIND_NOW=24,
 DT_CHECKSUM=1879047672,
 DT_CONFIG=1879047930,
 DT_DEBUG=21,
 DT_DEPAUDIT=1879047931,
 DT_ENCODING=32,
 DT_FEATURE_1=1879047676,
 DT_FILTER=2147483647,
 DT_FINI=13,
 DT_FINI_ARRAY=26,
 DT_FINI_ARRAYSZ=28,
 DT_FLAGS=30,
 DT_FLAGS_1=1879048187,
 DT_GNU_CONFLICT=1879047928,
 DT_GNU_CONFLICTSZ=1879047670,
 DT_GNU_HASH=1879047925,
 DT_GNU_LIBLIST=1879047929,
 DT_GNU_LIBLISTSZ=1879047671,
 DT_GNU_PRELINKED=1879047669,
 DT_HASH=4,
 DT_INIT=12,
 DT_INIT_ARRAY=25,
 DT_INIT_ARRAYSZ=27,
 DT_JMPREL=23,
 DT_MOVEENT=1879047674,
 DT_MOVESZ=1879047675,
 DT_MOVETAB=1879047934,
 DT_NEEDED=1,
 DT_NULL=0,
 DT_PLTGOT=3,
 DT_PLTPAD=1879047933,
 DT_PLTPADSZ=1879047673,
 DT_PLTREL=20,
 DT_PLTRELSZ=2,
 DT_POSFLAG_1=1879047677,
 DT_PREINIT_ARRAYSZ=33,
 DT_REL=17,
 DT_RELA=7,
 DT_RELACOUNT=1879048185,
 DT_RELAENT=9,
 DT_RELASZ=8,
 DT_RELCOUNT=1879048186,
 DT_RELENT=19,
 DT_RELSZ=18,
 DT_RPATH=15,
 DT_RUNPATH=29,
 DT_SONAME=14,
 DT_STRSZ=10,
 DT_STRTAB=5,
 DT_SYMBOLIC=16,
 DT_SYMENT=11,
 DT_SYMINENT=1879047679,

 iVar1 = __gmon_start__();
 return iVar1;
}

void FUN_00100510(void)
{
 (*(code *)(undefined *)0x0)();
 return;
}

// WARNING: Unknown calling convention yet
parameter storage is locked

int printf(char *__format,...)

{
 int iVar1;

 iVar1 = printf(__format);
 return iVar1;
}

void __cxa_finalize(void)
{
 __cxa_finalize();
 return;
}

void _start(undefined8 param_1,undefined8
param_2,undefined8 param_3)
{
 undefined8 in_stack_00000000;
 undefined auStack8 [8];

__libc_start_main(main,in_stack_00000000,&stack0x0
0000008,__libc_csu_init,__libc_csu_fini,param_3,
 auStack8);
 do {
 // WARNING: Do nothing block
with infinite loop
 } while(true);
}
// WARNING: Removing unreachable block
(ram,0x00100587)
// WARNING: Removing unreachable block
(ram,0x00100593)

void deregister_tm_clones(void)
{
 return;
}

// WARNING: Removing unreachable block
(ram,0x001005d8)
// WARNING: Removing unreachable block
(ram,0x001005e4)

void register_tm_clones(void)
{
 return;
}

void __do_global_dtors_aux(void)
{

 DT_SYMINFO=1879047935,
 DT_SYMINSZ=1879047678,
 DT_SYMTAB=6,
 DT_TEXTREL=22,
 DT_TLSDESC_GOT=1879047927,
 DT_TLSDESC_PLT=1879047926,
 DT_VERDEF=1879048188,
 DT_VERDEFNUM=1879048189,
 DT_VERNEED=1879048190,
 DT_VERNEEDNUM=1879048191,
 DT_VERSYM=1879048176
} Elf64_DynTag;

typedef struct Elf64_Shdr Elf64_Shdr,
*PElf64_Shdr;

typedef enum Elf_SectionHeaderType {
 SHT_CHECKSUM=1879048184,
 SHT_DYNAMIC=6,
 SHT_DYNSYM=11,
 SHT_FINI_ARRAY=15,
 SHT_GNU_ATTRIBUTES=1879048181,
 SHT_GNU_HASH=1879048182,
 SHT_GNU_LIBLIST=1879048183,
 SHT_GNU_verdef=1879048189,
 SHT_GNU_verneed=1879048190,
 SHT_GNU_versym=1879048191,
 SHT_GROUP=17,
 SHT_HASH=5,
 SHT_INIT_ARRAY=14,
 SHT_NOBITS=8,
 SHT_NOTE=7,
 SHT_NULL=0,
 SHT_PREINIT_ARRAY=16,
 SHT_PROGBITS=1,
 SHT_REL=9,
 SHT_RELA=4,
 SHT_SHLIB=10,
 SHT_STRTAB=3,
 SHT_SUNW_COMDAT=1879048187,
 SHT_SUNW_move=1879048186,
 SHT_SUNW_syminfo=1879048188,
 SHT_SYMTAB=2,
 SHT_SYMTAB_SHNDX=18
} Elf_SectionHeaderType;

struct Elf64_Shdr {
 dword sh_name;
 enum Elf_SectionHeaderType sh_type;
 qword sh_flags;
 qword sh_addr;
 qword sh_offset;
 qword sh_size;
 dword sh_link;
 dword sh_info;
 qword sh_addralign;
 qword sh_entsize;
};

typedef struct Elf64_Dyn Elf64_Dyn, *PElf64_Dyn;

struct Elf64_Dyn {
 enum Elf64_DynTag d_tag;
 qword d_val;
};

 if (completed_7697 != '\0') {
 return;
 }
 __cxa_finalize(__dso_handle);
 deregister_tm_clones();
 completed_7697 = 1;
 return;
}

void frame_dummy(void)
{
 register_tm_clones();
 return;
}

undefined8 fib(void)
{
 uint local_18;
 uint local_14;
 uint local_10;
 uint local_c;

 local_c = 0;
 local_10 = 1;
 printf("First %d terms of Fibonacci series
are:\n",0x1e);
 local_18 = 0;
 while ((int)local_18 < 0x1e) {
 if ((int)local_18 < 2) {
 local_14 = local_18;
 }
 else {
 local_14 = local_10 + local_c;
 local_c = local_10;
 local_10 = local_14;
 }
 printf("%d\n",(ulong)local_14);
 local_18 = local_18 + 1;
 }
 return 0;
}

undefined8 main(void)

{
 fib();
 return 0;
}

void __libc_csu_init(EVP_PKEY_CTX
*param_1,undefined8 param_2,undefined8 param_3)
{
 long lVar1;

 _init(param_1);
 lVar1 = 0;
 do {
 (*(code
*)(&__frame_dummy_init_array_entry)[lVar1])((ulong
)param_1 & 0xffffffff,param_2,param_3)
 ;
 lVar1 = lVar1 + 1;
 } while (lVar1 != 1);
 return;
}

typedef struct Elf64_Sym Elf64_Sym, *PElf64_Sym;

struct Elf64_Sym {
 dword st_name;
 byte st_info;
 byte st_other;
 word st_shndx;
 qword st_value;
 qword st_size;
};

void __libc_csu_fini(void)
{
 return;
}

void _fini(void)
{
 return;
}

Similar extraneous functions and data are generated by the compiler every time, which
allows this data to be filtered out algorithmically. I’ve written a script to do so. The output of
running this script on the above output is below.

Filtered Decompiled Code

undefined8 fib(void)
{
 uint local_18;
 uint local_14;
 uint local_10;
 uint local_c;

 local_c = 0;
 local_10 = 1;
 printf("First %d terms of Fibonacci series are:\n",0x1e);
 local_18 = 0;
 while ((int)local_18 < 0x1e) {
 if ((int)local_18 < 2) {
 local_14 = local_18;
 }
 else {
 local_14 = local_10 + local_c;
 local_c = local_10;
 local_10 = local_14;
 }
 printf("%d\n",(ulong)local_14);
 local_18 = local_18 + 1;
 }
 return 0;
}

undefined8 main(void)

{
 fib();
 return 0;
}

This is much better. But it’s not yet in a compilable form. The portions highlighted in red
below are causing compilation issues.

Filtered Decompiled Code

undefined8 fib(void)
{
 uint local_18;
 uint local_14;
 uint local_10;
 uint local_c;

 local_c = 0;
 local_10 = 1;
 printf("First %d terms of Fibonacci series are:\n",0x1e);
 local_18 = 0;
 while ((int)local_18 < 0x1e) {
 if ((int)local_18 < 2) {
 local_14 = local_18;
 }
 else {
 local_14 = local_10 + local_c;
 local_c = local_10;
 local_10 = local_14;
 }
 printf("%d\n",(ulong)local_14);
 local_18 = local_18 + 1;
 }
 return 0;
}

undefined8 main(void)

{
 fib();
 return 0;
}

Again these can be fixed algorithmically. The resulting code compiles successfully.

Final Compilable Code

int fib(void)

{
 int local_18;
 int local_14;
 int local_10;
 int local_c;

 local_c = 0;
 local_10 = 1;
 printf("First %d terms of Fibonacci series are:\n",0x1e);
 local_18 = 0;

 while ((int)local_18 < 0x1e) {
 if ((int)local_18 < 2) {
 local_14 = local_18;
 }
 else {
 local_14 = local_10 + local_c;
 local_c = local_10;
 local_10 = local_14;
 }
 printf("%d\n",(long)local_14);
 local_18 = local_18 + 1;
 }
 return 0;
}

int main(void)

{
 fib();
 return 0;
}

Using Ghidra with CSA Writeup
Chase Kanipe

chasekanipe@gmail.com

Overview— This report summarizes my attempts to use the
ghidra decompiler with clang static analyzer. The most
interesting result was that there are some cases where doing
analysis on the decompiled code is better than doing analysis on
the original source code.

I. SOME EXAMPLES

I went through the process of decompiling
some programs and analyzing them with clang
static analyzer. I did have to make a few manual
edits to some of the decompiled programs to get
them to recompile. Some examples are below.

A. Stack Vulns
Due to limited time I only had time to

investigate various stack buffer overflow vulns. I
ran clang static analyzer on five of the vulnerable
programs from here, both on the original source
code and on the decompiled form. Any vulns CSA
found on the source code it also found in the
recompiled versions. It did find vulns in all 5 of the
programs I tested, though I could make CSA fail by
adding loops or recursion in the right places. I did,
however, find some interesting results related to
compiler optimization which I’ll document in the
next section.

II. COMPILER OPTIMIZATIONS
A. Advantages

There are some edge cases where running
clang static analyzer on the decompilation from a
binary actually finds bugs that it would miss if it
had been run on the original source code. Here is
one such example.

Original Code

int main(int argc, char **argv)
{
 volatile int modified;
 char buffer[64];

 if(argc == 1) {
 errx(1, "please specify an
argument\n");
 }

 modified = 0;
 int num = 0;
 for (int i = 0; i < 128; i++) {
 num++;
 }
 strncpy(buffer, argv[1], num);

 if(modified == 0x61626364) {
 printf("you have correctly got the
variable to the right value\n");
 } else {
 printf("Try again, you got 0x%08x\n",
modified);
 }
}

It is well known that symbolic execution

engines often have trouble dealing with loops due
to path explosion. For what I assume is this reason,
CSA doesn’t find the overflow in the above code.

However, this loop is optimized out of the
compiled binary by gcc upon compilation. After
this code is decompiled and CSA is run on it, it

https://exploit.education/phoenix/stack-zero/

does find the bug. So surprisingly, even if the
original source code is available, there may be some
edge case benefits to compiling and decompiling
the code prior to analysis.

B. Problems
There are some problems created by

compiler optimizations though. Consider the same
buffer overflow vuln.

Original Code

int main(int argc, char **argv)
{
 volatile int modified;
 char buffer[64];

 if(argc == 1) {
 errx(1, "please specify an
argument\n");
 }

 modified = 0;
 int num = 0;
 for (int i = 0; i < 128; i++) {
 num++;
 }
 strncpy(buffer, argv[1], num);

 if(modified == 0x61626364) {
 printf("you have correctly got the
variable to the right value\n");
 } else {
 printf("Try again, you got 0x%08x\n",
modified);
 }
}

I compiled this binary with compiler

optimizations enabled (in this case, gcc -O3). The
decompiled code looks like this.

Decompiled Code

int main(char[] param_1,long param_2)

{
 long in_FS_OFFSET;
 char[] local_58 [72];
 long local_10;

 local_10 = *(long *)(in_FS_OFFSET +
0x28);
 if ((int)param_1 == 1) {
 errx(param_1,"please specify an
argument\n");
 }
 __strncpy_chk(local_58,*(undefined8
*)(param_2 + 8),0x80,0x40);
 __printf_chk(1,"Try again, you got
0x%08x\n",0);
 if (local_10 != *(long *)(in_FS_OFFSET +
0x28)) {
 // WARNING: Subroutine
does not return
 __stack_chk_fail();
 }
 return 0;
}

The compiler optimizations selected in this

case are the highest that gcc allows while still
conforming to standard compliance (-Ofast will
break standard compliance). It’s not surprising that
the decompiled C is less accurate in this case; I had
to make some manual edits to get it to compile. As
you can see from the highlighted portion, the
decompiler incorrectly estimates the size of the char
buffer, which means it could miss the buffer
overflow. In this particular example it still finds it,
but if between 65 and 72 bytes were copied, it
would miss the overflow.

